Intel® Extreme Tuning Utility, Version 3.0
BIOS Interface Specification

Revision 0.63
Last Update: February 2, 2011

Intel Confidential i Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Legal Notices and Disclaimers

INTEL CORPORATION MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. INTEL CORPORATION ASSUMES NO RESPONSIBILITY FOR ANY ERRORS THAT MAY APPEAR IN
THIS DOCUMENT. INTEL CORPORATION MAKES NO COMMITMENT TO UPDATE NOR TO KEEP CURRENT THE
INFORMATION CONTAINED IN THIS DOCUMENT.

THIS SPECIFICATION IS COPYRIGHTED BY AND SHALL REMAIN THE PROPERTY OF INTEL CORPORATION. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED HEREIN.

INTEL DISCLAIMS ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY
RIGHTS, RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. INTEL DOES NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATIONS WILL NOT INFRINGE SUCH RIGHTS.

NO PART OF THIS DOCUMENT MAY BE COPIED OR REPRODUCED IN ANY FORM OR BY ANY MEANS WITHOUT
PRIOR WRITTEN CONSENT OF INTEL CORPORATION.

INTEL CORPORATION RETAINS THE RIGHT TO MAKE CHANGES TO THESE SPECIFICATIONS AT ANY TIME,
WITHOUT NOTICE.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's Software License Agreement provided with
the software, or in the case of software delivered to the government, in accordance with the software license
agreement as defined in FAR 52.227-7013.

Intel and the Intel logo are trademarks of Intel Corporation and its subsidiaries around the world.

* QOther brands and names may be claimed as the property of others.

Intel Confidential i Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Revision History

Revision Date Reason for Changes

0.3 9/1/2010 Initial Revision of the Intel® Extreme Tuning Utility 3.0 BIOS Specification. This
revision of the XTU BIOS Specification is not backward compatible with prior
revisions of the interface.

0.31 9/13/2010 Added additional SMI functions for Read Defaults, Read XMP Profile 1 & Read
XMP Profile 2.

0.32 9/14/2010 Updated the ASL examples to be in line with the updated ASL definitions.

0.4 10/1/2010 Incorporating feedback from BIOS and development stakeholders.

0.5 11/4/2010 Incorporated additional feedback from ACPI expert. Updated some ASL method
definitions for ease of BIOS implementation.

0.6 11/16/2010 Updated the formatting of the document for consistency. Added the BIOS Interface
Overview.

0.61 11/18/2010 Added support for the Short and Extended Time Window Controls.

0.62 1/31/2011 Addressed multiple typographical errors.

Added error codes for CDWR and CDRD methods.
Added example code for GACI initialization in C and usage within ASL.

0.63 2/2/2011 Added Controlld’s specific for SNB-E.

Intel Confidential iii Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Table of Contents

1 INTRODUCTION. it 1
1.1 PURPOSE OF THIS DOCUMENT ...utittittitiittteiesieiesie st sie st bbbttt bbbttt st nbe st enes 1
1.2 DOCUMENT SCOPEootiuiiuietiaseateatessestessessessessasessaasessessessessessesssssssessessessessessessessessesssessessessessessessenes 1
1.3 AASSUMPTIONS ..eititeieiesteseeseasessessessessesseseseessasesseasessessessessesseseesaaseesesseesessessessesseseeseeseasensessesensessnnen 1
1.4 SUPPORTED PLATFORMS.....cuttttitiittitistestestesteseesessessessestessesesteseesessesbesbesbesbesbesseseeseeseabesbesbesbesbenneseenes 1
1.5 TERMINOLOGY AND ACRONYMScutitiiuiieieerieseaseasessessessessessessesessessessessessessessessessessssessessessessessessenes 1
1.6 RELATED DOCUMENTS.....cttietiettstestestestesteseeseesessassessessessessesseseessssessessessessessessessessssessessessessessessessenes 2
2 BIOS INTERFACE OVERVIEW. ..ot 3
2.1 KKEY CONCEPTS ..ettuteuietteteatestestestestesteseesteseasestesbesbesteabesa e se e st e se e Rt e b e e b e e be e b et et e s e e s e e st e b e e b e abe st e nbe st e e ene e 3
211 XTU ACPIDEVICE ...ccuiiuietiiie sttt sttt ettt sttt st saesaeteabe s beste st et et essesaeteaseatesrente e e e eneans 3
2.1.2 XTU SMIHANDLERcoutitiiitittite ittt ettt sttt ettt b sb bt e e s e ne et e s benbe st e nbe st e e e s e 4
2.2 CALL SEQUENCEcuttuittietiettste sttt ste st ste e st e s e te s s bestesbesa e et e s e e s e e bt et e e be e ke nb e be b e e e st e st e b e e bt nbe st e nbe e e e ene e 5
3 INTERFACE DEFINITIONS. .. oottt ittt e e ae s e 6
3.1l ACPI DEVICE INTERFACE ...ctittitiitisteitetestesteestestestestesaesaesessasaasaasessestessessessessassasassessessessessessessensens 6
3.1.1 DEVICE DESCRIPTION ..ecutittitiittatestestestesteseaseasessessessessessessessassssessessessessessessessessessssessessessessessensensessans 6
3.1.2 OBJIECT OVERVIEW ...ocuiitiitiiiistestestesteseesteseeseesessesbessesbesaessestessaseaseabesbesbessesbete st aseaseabeabeabesbenteneeneenens 6
3.1.3 GENERIC OBUIECTS . eutettetteteetestestestestessestestaseesassassessessessessessassassaseasessestessessessessassesaasessessessessessensessans 7
3.1.3.1 Interface VErsion (IVER) ..ottt sttt sttt s re e sbe e sreene 7
3.1.4 CONTROL DETAIL OBUIECTS ..ettittititeieeieseeseasestestessestessesessesessessessessessessessessessessasessessessessessensessensens 7
3.1.4.1 Get Available Controls (GACH) ..ot 7
3.1.4.2 Get Discrete SUpported ValueS (GDSV)ccooiiiiiiiiiieieisise st 10
3.1.4.3 Get SMI Command Valug (GSCV)ouiiiiie ettt st s re e 12
3.1.4.1 Get XMP Display ValUeS (GXDV)cvciiiiiiiiiieiie ittt 12
3.1.5 RUN-TIME CONTROL OBJIECTS....citiitiieieriereateastetessessessessessessessassssessessessessessessesssssssessessessessessessenes 14
3.1.5.1 Control Device Read (CDRD)cciiieiiiiiie ettt sttt sbe et et s re e sne e 14
3.1.5.2 Control Device WILE (CDWR)ccoii ottt sttt sbeeta et s re e ne e 15
3.1.6 MONITOR-ONLY OBIECTS . utitiitiitiiteieieseeseesesstasessessessessessessessasessessessessessessessesssssssessessessessessessenes 16
3.1.6.1 Temperature Sensor Data DUMP (TSDD)......coviiiiiiiiieic e s s 17
3.1.6.2 Voltage Sensor Data DUMP (VSDD)ccoiiiiiiiiiie ettt st s re e 18
3.1.6.3 Fan Sensor Data DUMP (FSDD)cceiiiiiiiiiiiiesie et 19
3.1.6.4 Sensor Data Sampling Period (SDSP)ccccuuiiiiiiiieieieisise e 20
3.1.7 EXAMPLE IMPLEMENTATION ...titiititeteseeseeseeseaseasessessessessessesensesseasessessessessessnssesessessessensessessensensenes 20
3.2 WATCHDOG TIMER .itttiuitiitteittesteesteesttessteeteesteestessbeassaeaseeebeesbeesbeesseeasbeanbeenbe e beenbeenbeestaeanaeanteeneee e 26
3.3 SW SMI REAL-TIME COMMUNICATIONS INTERFACEcccciitiiiiiieiiesiessieesieesieesieesinessaesnseeseee e 26
TR TB R © 1Y SRS 26
3.3.2 BIOS SETTINGS STRUCTURE......ceittttteeeseeseatesseatessessesseseeseesensessessessessessessessessesessessessessessessensensenes 26
KRS G T] N [TSP 27

Intel Confidential iv Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

IO O 0 A = (- Lo = 1 (@ RS ST=1 4] o SR 27

3.3.3.2 WIILE BIOS SEIINGSeveiiiiiteitite ettt ettt 28
3.3 RETURN VALUESoittiieittsteetie it ateetesteeseesteaseestesteassesaeaseestesseaseeateaseesseaseaseesaeaseensesseaseensesseaneensenns 28
K TR I O R = 1 o G O o [PO PRI 28
KT B A VAV = V1 1 o O To SR 29
APPENDIX A - ENUMERATIONS. ...ttt se e 30

Intel Confidential % Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

List of Fiqures

Figure 1: OS-t0-BIOS COMMUNICALIONS.ccviieieieitesiestiseaseeeeseesiestestessesseeseeseseeseestesseaseeseessessessessessessessesssessessenses 4
List of Tables
Table 1: Definition 0f ACIONYMS USE.........ciuiiiiiiiii sttt sttt et e et e ae st e besreeteareeneeseenrennees 2
Table 2: Related DOCUMENTALIONcueiriiriiriireie e r e b e b e r et nr b nen e e n s 2
Table 3: ACPI DeVice 1deNTIFICALIONcoiiiiriiriiie et 6
Table 4: ACPI DeVICe ODJECT OVEIVIBWo.viuiiiiiiiitiieiieteiees etttk bbbt bt r e 7
Table 5: GACI Return Valug DefiNITION.ccuiiiiiiiiiiee bbbt 8
Table 6: ControlldData Structure DEFINITIONcc.ciiiiiiiiiie e 10
Table 8: GACI Return Valug DefiNIION.cuiiiiiiiiiiiee bbbttt 12
Table 9: DiscreteValueData Structure DEfiNItIONc.coiiiiiiiiiiii s 12
Table 11: GXDV Return Valug DEfiNIIONccooiiiiiiiiiiiee et 14
Table 12: XmpDisplayValue Structure DefiNItIONccoiiiiiiiiiie it e e e 14
Table 14: CDRD Return Value DefiNitionccoiiiiiiiiiiisesesn s 15
Table 16: TSDD Package Parameter DefiNitioNScccooiiiiii i et 18
Table 18: FSDD Package Parameter DefiNItiONS.ccviiiiiiiee i sre e e sraenreens 20
Table 20: BIOS Settings Data SIIUCTUIEcviiiiiecie e se ettt e e te e s e st e sraesreesteeneeaneesnsenreennnens 27
Table 21: BIOS SEHING ENLIY ...oiiiiiieie ettt e et e e e e s e s te e be e te e s teaseesseessaesteeneeenseaneeansenreenreens 27
Table 22: Read BIOS Settings Command, REGISIEN SELUDc.urviiiiriiiiirieieiiri ettt 28
Table 23: Write BIOS Settings Command, REGISTEr SELUPDc.oiviiiiriiiiiriieiee s 28
Table 25: BIOS Settings Command Warning COUES.........ccueiiiriiiiriiieiirieete sttt 29
Table 26: Usage Sorted Control ID ENUMETALIONSciriiiiriiiiiriiieiisieeest sttt 30
Table 27: Numerically Sorted Control ID ENUMEIELIONSccooiiiiiiiiiirieieisiee e s 32
Table 28: Temperature (TSDD) USAQE ENUMETALIONcveiveieeieeiieesieeteetesreesteestaesteestesaeseesraesreesaeesesnsesssesseessaens 33
Table 29: Voltage (VSDD) USAQgE ENUMETALIONccvvevieieiieseeseesteesteeteetesssesteestaesseetessaessaesseesseessessesssesssessesssenns 34
Table 30: Fan (FSDD) USAQE ENUMEITALIONccviivieiireiieiesieseeseesteestesaesseesseesteestaesteestessaesseesseesseesseansesnsesssessenssenns 35
Intel Confidential Vi Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

1 Introduction

1.1 Purpose of this Document

The purpose of this document is to specify the BIOS interfaces necessary for implementation to support the Extreme
Tuning Utility (XTU) application. It includes all the information necessary for someone to implement and use these
interfaces. It will stand on its own and not be dependent on other documents to describe how to provide the BIOS
interfaces.

1.2 Document Scope

This BIOS Interface Specification provides information regarding the programming model that is used for this
module, any dependencies that exist within this module, and complete descriptions of the interfaces that are
provided by this module. Let it be clear that the document provides only the interface, not the design or
implementation of those interfaces.

1.3 Assumptions

Throughout this document technical terms regarding BYTEs, WORDs, DWORDs, and QWORDs are used. All
references should be assumed to be little-endian. Also, BYTEs should be assumed to be 8 bits and WORDSs 16
bits.

1.4 Supported Platforms

The Intel® Extreme Tuning Utility supports a specific set of Intel microprocessor based platforms. XTU supports
all Sandy Bridge & Ivy Bridge based processors. This includes both Mobile and Desktop processors. It also
includes processors with or without integrated graphics.

1.5 Terminology and Acronyms

Acronym Description
ACPI Advanced Configuration and Power Interface
ASL ACPI Source Language
BCLK Base Clock (aka Reference Clock) — The clock used as a source for many of the clock domains on
the CPU and PCH
BIOS Basic Input/Output System — This is the firmware responsible to boot a PC
CPU Central Processing Unit — The main processor for a platform
Intel Confidential 1 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Acronym Description

EAX Register of the x86 processor

EBX Register of the x86 processor

ECX Register of the x86 processor

EDX Register of the x86 processor

1A Intel Architecture

10 Input/Output

(O] Operating System

PCH Platform Controller Hub

PCMCIA Personal Computer Memory Card International Association — aka PC Card

PLL Phased Locked Loop

RPM Rotations Per Minute

SMI System Management Interrupt

SPD Serial Presence Detect — Non-volatile memory that is used on memory sticks to describe the
characteristics of the memory

SW Software

TDP Total Design Power — The maximum power that a processor is designed to use

VR Voltage Regulator — A circuit used to maintain a specific voltage in order to power another circuit

WDT Watchdog Timer — A timer used to recover from a halted or hung platform state

XMP Intel® Extreme Memory Profiles — Pre-defined Memory Overclocking Profiles defined as part of
the SPD

XTU Intel® Extreme Tuning Utility — Overclocking software provided by Intel

Table 1: Definition of Acronyms Used

1.6 Related Documents

Document Name Revision Doc Location
Advanced Configuration and Power Interface | 3.0b http://www.acpi.info/
Platform Performance Tuning Guide SNB VIP #29037
VB VIP #TBD
Extreme Memory Profile specification 1.3 VIP #TBD

Table 2: Related Documentation

Intel Confidential 2 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

http://www.acpi.info/

2 BIOS Interface Overview

The BIOS interfaces in the Extreme Tuning Utility serve two purposes for the XTU application. The first usage of
this interface is to persist BIOS settings from the OS by providing mechanisms for reading from and writing to
BIOS setup. The second purpose of the BIOS interface is to provide a mechanism that XTU can use to manipulate
runtime, board-specific devices.

The XTU BIOS interfaces do not replace the need for the BIOS to implement core overclocking functionality. In
order for the interfaces that are described within this document to function correctly, it is necessary for the BIOS to
implement support for overclocking. This includes reference clock (or belk) control, voltage control, manual
memory timing manipulation, and more. Descriptions specific to each platform regarding implementation of core
overclocking functionality is out of the scope of this document. Please refer to the appropriate Platform
Performance Tuning Guide for direction in this area.

2.1 Key Concepts

There are two key concepts that should be understood by the BIOS engineer when implementing the XTU BIOS
interface. The first of these concepts is the XTU ACPI Device and the purpose of this device. The XTU ACPI
Device is generated by ASL that is written by the BIOS developer. The main purpose of this device is to provide a
mechanism that can be used for passing platform specific information from the BIOS to the OS. It can optionally
provide support for reading from and writing to platform specific hardware in runtime. The second main concept
that is important to understand is the mechanism that XTU uses in order to persist data across reboots. In order
persist BIOS setup information across reboots XTU passes updated information to the BIOS via an SMI. The
associated SMI handler must interpret the data that is passed to the BIOS and store it in flash or another non-volatile
medium where it can be integrated into future boots.

2.1.1 XTU ACPI Device

This device serves two main purposes. The first purpose is to pass the complete list of tuning controls (See
ENUMERATIONS) which are supported by the platform along with the settings which they support to the XTU
software. This listing of controls and settings allows XTU the ability to expose settings to the user which require a
reboot. It also allows the XTU software the ability to expose platform specific hardware.

The second purpose of the XTU ACPI device is to allow for runtime control and monitoring of platform specific
devices. The Run-Time Control Objects and Monitor-Only Objects described later in this document allow for both
runtime control and monitoring style devices to be implemented.

Intel Confidential 3 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

2.1.2 XTU SMI Handler

The SMI Handler must be developed to allow for persisting data to the BIOS from the OS at run-time. A software
SMI interface is used to pass control to the BIOS from the application. The SW command handler data is a piece of
data that is sent to the application through the previously mentioned ACPI methods. Using this software System
Management Interrupt (SMI) port and command data control will be passed to the BIOS for handling of some
functionality. This functionality is for reading and writing BIOS setup data. This functionality is represented in

Figure 2.

OS BIOS Driver

adiNd M\S
BIOS Data

SMM BIOS Handler

eled so

Store Non-Volatile
BIOS Data

Figure 1: OS-to-BIOS Communications

Intel Confidential 4 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

2.2 Call Sequence

The following flow chart outlines the calls that will be made to BIOS by the XTU software. All calls referenced in
this chart are defined in the INTERFACE DEFINITIONS section later in this document.

XTU Software
Initializes at OS Load

Does XTU ACPI
Device exist?

/" StopBIOS >
‘ Processing <€No

Call the GACI
Method

Process the next
Control ID

Yes Process the GACI

data for the current [€———
Control ID No

Does this Control ID
require discrete
Call the GDSV controls?

Method for this Yes
Control ID and

process the data

more Control
IDs?

Attempt to read

No————— both XMP profiles
via GXSV method

v

Read the SMI
Command Value via
GSCV method

v

Issue an SMI Read to
collect current BIOS
state

v

Read the monitor
sampling rate via
the SDSP method

A 4 \ 4
Read and Write via Read monitoring
CDRD and CDWR as values via TSDD,

necessary VSDD, and FSDD

|~At the sampling period

Intel Confidential 5 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

3 Interface Definitions

3.1 ACPI Device Interface

The custom XTU ACPI Device is the foundation of the new XTU BIOS Interface. This ACPI device definition is
required in order to allow XTU to communicate to BIOS for the purpose of either persistence of setting values
across reboots or control of run-time platform specific devices. The following sections will describe each of the
required and optional structures, their purpose, and detailed descriptions.

All examples in the following section are referring to ASL code. For details on syntax and ASL conventions please
refer to the Advanced Configuration and Power Interface Specification available at http://www.acpi.info.

3.1.1 Device Description

The following table provides details of the generic ACPI device. This device is what the XTU ACPI driver will
register against and must be present in order to support either ACPI Control or Monitor-only methods and objects.

Identification Method Value

_HID INT3394

_CID PNPOCO2

Table 3: ACPI Device Identification

This device can be implemented under any scope of the platform ACPI's namespace, however, it is recommended to
be implemented within the _SB scope.

Specifying the _CID ensures that the ACPI device does not show up in the Windows Device Manager as an
"Unknown Device" with a yellow bang.

3.1.2 Object Overview

The following table provides an overview of the objects which are described in the upcoming sections. This
provides a clear understanding of the various supported names and methods which make up the XTU ACPI device.

OAb(j;tleDc!t Object Name Type Description
IVER Version Name | This object defines the version number of the interface.
This object defines the Control 1Ds supported by the platform
GACI Get Available Controls | Method | and includes the static information associated with those
controls.
Get Discrete Supported This object is used to describe a discrete set of display values
GDsSV Values PP Method | when the control is unable to be described as a continuous set
of values.
Intel Confidential 6 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

http://www.acpi.info/

ACPI

Object Object Name Type Description
GSCV Get SMI Command Name This object is used to describe the command that must be sent
B Value to the software SMI.

Get XMP Display This object is used to retrieve the Control IDs and display
CASV Values Method values associated with a requested XMP Profile.

This object is used to read the current state of a platform

CDRD Control Device Read Method o ;
specific runtime control.

This object is used to write the current state of a platform

CDWR Control Device Write | Method o ;
— specific runtime control.

Temperature Sensor This object is used to get the current state of all temperature

Tsbb Device Dump Method sensors on the system.

VSDD Voltage Sensor Device Method This object is used to get the current state of all voltage sensors
EE— Dump on the system.

FSDD Fan Sensor Device Method This object is used to get the current state of all fan sensors on
—— Dump the system.

SDSP Sensor Data Sampling Method This object is used to get the sampling period that should be

Period used for all monitors.

Table 4: ACPI Device Object Overview

3.1.3 Generic Objects

The following objects provide the XTU software with standard information that describes the ACPI device interface.

3.1.3.1 Interface Version (IVER)

The IVER object evaluates to an integer that represents the version of this interface. It is a required object
to be implemented on this interface.

The upper two bytes indicate the major version and the lower two bytes indicate the minor version.
Name (IVER, 0x00010000) //Version 1.0

3.1.4 Control Detail Objects

The ACPI Control Detail Objects provide XTU with a variety of information about the platform. Specifically they
provide information regarding which Control 1Ds are supported in runtime, which are persisted to the BIOS, and
what settings are available for those controls on this platform. The list of supported Control IDs can be found in
TABLE 27: NUMERICALLY SORTED CONTROL ID ENUMERATIONS and TABLE 28: TEMPERATURE (TSDD) USAGE
ENUMERATION

3.1.4.1 Get Available Controls (GACI)

The GACI object is a control detail object which is implemented by the BIOS that allows for retrieving the
entire list of Control I1Ds supported by the BIOS (see ENUMERATIONS). Any Control ID that is present in
the list is assumed to be a Control ID that is handled by the SW SMI REAL-TIME COMMUNICATIONS

Intel Confidential 7 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

INTERFACE read and write routines (section 3.3). The XTU Software will then attempt to use the ACPI
RUN-TIME CONTROL OBJECTS (section 3.1.5) in order to read whether each Control ID is supported via
these interfaces. The GACI object is responsible to communicate the static information for all Controls
which are able to be manipulated on the platform.

Syntax for Signature
Method (GACI, 0, NotSerialized, 0, PkgObj)

Description
The purpose of this method is to retrieve basic data about controls that are supported by the BIOS.

Arguments
No input is required for this method.

Result
A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type
ErrorCode // DWORD
DataBuffer // ControlIdDatal]

})

The resultant buffer is defined as an array of packed ControlldData C-structs.

struct ControlIdData
{
DWORD ControlId
WORD NumberOfValues
BYTE Precision
BYTE Flags
DWORD DefaultDataValue
DWORD MinDataValue
DWORD MaxDataValue
DWORD MinDisplayValue
DWORD MaxDisplayValue
}

Result Parameter Definitions

Field Name Definition
Defined as:
Success ==
ErrorCode Unexpected Error == OXFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure.
In the failure case, the buffer is defined as indeterminate and the caller
should not use that data.

The buffer returned as part of the GACI call is an array of ControlldData
DataBuffer C-structs. Itis valid to return an empty buffer. This would imply that
only monitoring features are supported by the platform.

Table 5: GACI Return Value Definition
Intel Confidential 8 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Field Name

Definition

Controlld

This field describes a Control 1D that is supported by the BIOS via the
SW SMI REAL-TIME COMMUNICATIONS INTERFACE.

NumberOfValues

This field is used for two purposes. First if the control requires a value set
of discrete numbers as opposed to a set of continuous numbers then this
field should be set to FFFFFFFh. This tells the XTU software to use the
GET DISCRETE SUPPORTED VALUES (GDSV) method in order to retrieve
the value set for this Control ID.

If the Control ID can be described by a continuous set of values then this

parameter describes the number of supported values that are contained in

that data set. This allows the caller to determine the step size for both the
Data Values and the Display Values in order to generate a complete data

set as well as a complete set of options to display to the end-user.

Precision

This field is used to allow the BIOS to represent non-whole numbers as
fixed-point values. The precision specified will be applied to all Display
Values in the data set of the associated Control ID. The precision field
will be used for both continuous and discrete value sets. See the
following examples:

DisplayValue: 125
Precision: 2
XTU Ul: 1.25

DisplayValue: 40
Precision: 0
XTU Ul: 40

DisplayValue: 400
Precision: 1
XTU Ul: 40.0

Flags

Flag Bit Definitions:
Bit[0] 1 — Real Time ACPI Interface Support
0 — No Real Time ACPI Interface Support
If bit 0 is a 1 then the RUN-TIME CONTROL
OBJECTS are implemented for this Control ID.

Bit[1:7] Reserved — Should be 00h

DefaultDataValue

The value of the data associated with the default setting for this Control
ID. This data value must be contained within the value set described by
the Min/Max Data Values or by the GET DISCRETE SUPPORTED VALUES
(GDSV) data values.

MinDataValue

The value of the data associated with the MinDisplayValue. This data
will be sent to both the SW SMI REAL-TIME COMMUNICATIONS
INTERFACE and the RUN-TIME CONTROL OBJECTS if they are supported
when attempting to apply the minimum display value.

This value is not used if the GET DISCRETE SUPPORTED VALUES (GDSV)

Intel Confidential

9 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Field Name Definition

method is implemented for this Control ID.

The value of the data associated with the MaxDisplayValue. This data
will be sent to both the SW SMI REAL-TIME COMMUNICATIONS
INTERFACE and the RUN-TIME CONTROL OBJECTS if they are supported
when attempting to apply the maximum display value.

This value is not used if the GET DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control 1D.

The minimum value that is to be used for display purposes by the XTU
user interface.

MaxDataValue

This value is ignored if the GET DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control ID.

NOTE:

This value can also be used for the non-standard data type definitions

MinDisplayValue outlined below (see ENUMERATIONS):

Enable/Disable Control IDs — In this case the MinDisplayValue
should be 0. This represents the Disable state.

XMP Profiles — In this case the MinDisplayValue should be 0.
A DisplayValue of 0 represents No Current Profile. A
DisplayValue of 1 represents Profile 1. A DisplayValue of 2
represents Profile 2. All other values are unsupported.

The maximum value that is to be used for display purposes by the XTU
user interface.

This value is ignored if the GET DISCRETE SUPPORTED VALUES (GDSV)
method is implemented for this Control ID.

NOTE:

This value can also be used for the non-standard data type definitions

MaxDisplayValue outlined below (see ENUMERATIONS):

Enable/Disable Control IDs — In this case the MinDisplayValue
should be 0. This represents the Disable state.

XMP Profiles — In this case the MinDisplayValue should be 0.
A DisplayValue of 0 represents No Current Profile. A
DisplayValue of 1 represents Profile 1. A DisplayValue of 2
represents Profile 2. All other values are unsupported.

Table 6: ControlldData Structure Definition

3.1.4.2 Get Discrete Supported Values (GDSV)
The GDSV object is a control detail object which retrieves a specified Control ID’s (see ENUMERATIONS)
discrete set of BIOS setting values, display values, and an associated precision for the entire list. This
Intel Confidential 10 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

mechanism is only necessary if either the display values or the setting values are non-continuous. This
method also returns the precision of the display values.

Syntax for Signature
Method (GDSV, 1, NotSerialized, 0, PkgObj, IntObj)

Description
The purpose of this method is to retrieve the complete set of discrete values supported for the requested
Control ID on this platform.

Arguments
The single input to the GDSV method is the Control ID to be queried.

Parameter Definitions

Field Name Definition
ControllD This is a value which represents a specified control (see ENUMERATIONS).
(Arg0)
Table 7: GDSV Argument Definition
Result

A package object is returned with the following definition:
Name (RETV, Package()

{ // Field Name // Field Type
ErrorCode // DWORD
DataBuffer // DiscreteValueDatal]

})

The resultant buffer is defined as an array of packed DiscreteVValueData C-structs.

struct DiscreteValueData
{
DWORD DataValue
DWORD DisplayValue
}

Result Parameter Definitions

Field Name Definition

Defined as:
Success ==
Only Continuous Values Supported ==

Unexpected Error == OXFFFFFFFF

ErrorCode Any value that is returned which is not equal to 0 is considered a failure.

A value of 1 describes a Control ID whose data is only defined in the GET
AVAILABLE CONTROLS (GACI).

In any error condition the caller should not use the DataBuffer as its
values are indeterminate.

Intel Confidential 11 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

3.14.3

3.14.1

Field Name Definition

The buffer returned as part of the GDSV call is an array of
DiscreteValueData C-structs. This array of structures should explicitly
define all supported values for the requested Control ID. If both the SW
DataBuffer SMI REAL-TIME COMMUNICATIONS INTERFACE and the RUN-TIME
CONTROL OBJECTS are supported, then the array of supported values will
be shared between them.

It is not valid to return an empty buffer.
Table 8: GACI Return Value Definition

Field Name Definition

This value will be sent as the input to both the SW SMI REAL-TIME
DataValue COMMUNICATIONS INTERFACE and the RUN-TIME CONTROL OBJECTS for
the associated DisplayValue.

The value for the graphical user interface display which will be presented
) to the end-user. Any precision that is applied to the DisplayValue is
DisplayValue described in the GET AVAILABLE CONTROLS (GACI) method with the
associated Control ID.

Table 9: DiscreteVValueData Structure Definition

Get SMI Command Value (GSCV)

The GSCV object is a control detail object which evaluates to the SMI command that should be sent to the
appropriate SW SMI port for the platform. This is a custom value for each BIOS that designates which
value should be placed in the AL register prior to performing the SW SMI described in the SW SMI REAL-
TiME COMMUNICATIONS INTERFACE section of the document.

Syntax for Signature
Name (GSCV, 0xXX)

Get XMP Display Values (GXDV)

The GXDV object is a control detail object which retrieves the requested XMP profile’s settings and their
associated display values. This mechanism is only necessary if the platform supports XMP. It is an
optional method for implementation. However it is required to be implemented for XTU to support XMP.

Syntax for Signature
Method (GXSV, 1, NotSerialized, 0, PkgObj, IntObj)

Description

The purpose of this function is to query the BIOS about the memory frequency, timings, and voltages
associated with a specific XMP profile. All Memory settings that are supported by the platform must be
returned as part of the BIOS Settings Data Structure returned from the SMI call. This includes every
supported Control ID from the memory section of TABLE 27: NUMERICALLY SORTED CONTROL 1D
ENUMERATIONS as well as the Memory Voltage and optionally the System Agent VVoltage from the voltage
section of the enumeration. All of this data must be returned by this method.

Arguments
The single input to the GXDV method is the XMP Profile to be queried, Profile 1 or Profile 2.

Intel Confidential 12 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Parameter Definitions

Field Name Definition

This is a value which represents either Profile 1 or Profile 2.
ProfileNumber 1 — Retrieve values for Profile 1
(Arg0) 2 — Retrieve values for Profile 2

All other inputs — Invalid and should return an error.

Table 10: GXDV Argument Definition

Result
A package object is returned with the following definition:

Name (RETV, Package()

{ // Field Name // Field Type
ErrorCode // DWORD
DataBuffer // XmpDisplayValuel[]

})

The resultant buffer is defined as an array of packed XmpDisplayValue C-structs.

struct XmpDisplayValue

{
WORD ControlID
BYTE Reserved
BYTE Precision
DWORD DisplayValue

}

Result Parameter Definitions

Field Name Definition

Defined as:

Success ==

Invalid Input Argument ==

XMP Not Supported ==
ErrorCode Unexpected Error == OXFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure.
A value of 1 describes an invalid input. This is generally because a
request for Profiles other than 1 & 2.

In any error condition the caller should not use the DataBuffer as its
values are indeterminate.

Intel Confidential 13 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Field Name Definition

The buffer returned as part of the GDSV call is an array of
XmpDisplayValue C-structs. This array of structures should explicitly
DataBuffer define all Control IDs and their associated Display Values that will be
altered if the requested XMP Profile is applied to the system.

It is not valid to return an empty buffer.

Table 11: GXDV Return Value Definition

Field Name Definition

This field describes a Control ID that is manipulated if the currently
ControlID queried XMP Profile is selected to be applied to the system.

Reserved This field must be set to 00h.

This field is used to allow the BIOS to represent non-whole numbers as
fixed-point values. The precision specified will be applied to the value in
the DisplayValue field of this structure. See the following examples:

DisplayValue: 125
Precision: 2
XTU UL: 1.25
Precision DisplayValue: 40
Precision: 0
XTU UL 40
DisplayValue: 400
Precision: 1
XTU UL 40.0

] The value for the graphical user interface display which will be presented
DisplayValue to the end-user.

Table 12: XmpDisplayValue Structure Definition

3.1.5 Run-Time Control Objects

The ACPI Control objects provide access to various voltage, clock, and other platform specific controls that are
implemented by the BIOS on a specific platform. These objects can be accessed from the OS level to provide
applications with access to manipulating certain types of hardware on the platform. This control is accomplished by
defining and implementing ACPI device objects in the platform BIOS according to this specification and accessing
them through the XTU software.

3.1.5.1 Control Device Read (CDRD)

The CDRD obiject is a control method which is implemented by the BIOS that allows for reading the
current value of an object which is controllable in real-time. This object is only required to be implemented
when supporting real-time control for platform specific hardware. Handlers to support Control I1Ds for

Intel silicon based features are not required.

Intel Confidential 14 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

An example implementation can be found in Section 3.1.7.

Syntax for Signature
Method (CDRD, 1, Serialized, 0, PkgObj, IntObj)

Description

The purpose of this method is to be able to read the current value of the hardware via a BIOS implemented
custom interface. This method will always provide the data necessary to determine the current value of the
actual platform hardware.

Arguments
The CDRD control method has one input argument. The sole input is the Control ID that should be read.

Parameter Definitions

Field Name Definition
ControllD This is a value which represents a specified control (see ENUMERATIONS).
(Arg0)
Table 13: CDRD Argument Definition
Result

A package object is returned with the following definition:
Name (RETV, Package()

{ // Field Name // Field Type
ErrorCode, // DWORD
DataValue // DWORD

})

Result Parameter Definitions

Field Name Definition
Defined as:
Success ==
ErrorCode Unexpected Error == OXFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure to
read the device. In this case, the value of the DataValue field is defined
as indeterminate and the caller should not use that data.

The current value of the hardware as reported by the BIOS. The meaning
DataValue of these values is defined by either the GET AVAILABLE CONTROLS
(GACI) or the GET DISCRETE SUPPORTED VALUES (GDSV) method.

Table 14: CDRD Return Value Definition

3.1.5.2 Control Device Write (CDWR)
The CDWR object is a control method which is implemented by the BIOS that allows for writing to an
object which is controllable in real-time. This object is only required to be implemented when supporting
Intel Confidential 15 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

real-time control for platform specific hardware. Handlers to support Control IDs for Intel silicon based
features are not required.

An example can be found in Section 3.1.7.

Syntax for Signature
Method (CDWR, 2, Serialized, 0, IntObj, {IntObj, IntObj})

Description

The purpose of this method is to be able to write the requested value to the hardware via a BIOS
implemented custom interface. This method is responsible to write the requested value to hardware and
return a success or fail status to the caller.

Arguments
The CDWR control method has two input arguments. Both arguments are DWORD values. The first
argument is the Control ID. The second argument is the value to be written to the hardware.

Parameter Definitions

Field Name Definition
Control1D This is a value which represents a specified control (see ENUMERATIONS).
(Arg0)
The value that is being requested to be written to hardware. It will be a
DataValue value the XTU software has retrieved from either the GET AVAILABLE
CONTROLS (GACI) or the GET DISCRETE SUPPORTED VALUES (GDSV)
(Arg) methods

Table 15: CDWR Argument Definition

Result
Name (RETV, ErrorCode)

Result Parameter Definitions

Field Name Definition

Defined as:
Success ==
Non-real Time Control ID requested = 1
Unexpected Error == OXFFFFFFFF

Any value that is returned which is not equal to 0 is considered a failure to
write to the device.

ErrorCode

3.1.6 Monitor-Only Objects

The Monitor-Only objects provide access to various temperature, voltage, and fan data implemented by BIOS on a

particular platform through an application level mechanism. This is accomplished by defining and implementing the

methods described in this section within the platform BIOS and using software (i.e. Intel® Extreme Tuning Utility)
to view the thermal data.

Intel Confidential 16 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

3.1.6.1 Temperature Sensor Data Dump (TSDD)

The TSDD method evaluates to a packaged list of information about available temperature sensors and the
current absolute temperature values. This object is required to be implemented when using any
Performance Tuning & Monitoring ACPI Devices.

Typical temperature values returned by this object would include processor diode temperature (if available
and accessible). Other platform temperature sensors like voltage regulator, memory, or notebook skin may
also be returned.

Syntax for Signature
Method (TSDD, 0, NotSerialized, 0, PkgObject)

Description
The purpose of this method is to be able to get the current state of all temperatures on the platform which
have been provided by the platform.

Arguments

No input parameters.

Result

Name (RETV, Package ()

{ //Field Name //Field Type
UsageIdl, // DWORD
UniquelIdl, // DWORD
CurrentValuel // DWORD
Reservedl, // DWORD
UsageIdN, // DWORD
UniquelIdN, // DWORD
CurrentValueN, // DWORD
ReservedN // DWORD

H)

NOTE: If no temperature sensors are present on the system, then a null package must be returned for the
TSDD object.

Result Parameter Definitions

Field Name Definition

Indicates the type of device the temperature value is reported for. The
Usageld value must be one of the values from TABLE 28: TEMPERATURE (TSDD)
USAGE ENUMERATION.

The Uniqueld value reported by BIOS in the TSDD package must
Uniqueld uniquely identify a device within the Performance Tuning & Monitoring
ACPI Device scope (this includes VSDD and FSDD devices as well).

The units of the current absolute temperature value returned must be 10ths
CurrentValue of a Kelvin. For example, if the temperature is 30 degrees Celsius then the
value returned must be (2732 + 300) = 3032.

Reserved The value of the reserved field is 0000h.

Intel Confidential 17 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Table 16: TSDD Package Parameter Definitions

3.1.6.2 Voltage Sensor Data Dump (VSDD)

The VSDD method evaluates to a packaged list of information about available voltage sensors and the
current voltage values. This object is required when using any Performance Tuning & Monitoring ACPI
Devices.

Typical voltage values returned by this object would include CPU core, Uncore, Memory, and/or PCH.

Syntax for Signature
Method (VSDD, 0, NotSerialized, 0, PkgObject)

Description
The purpose of this method is to be able to get the current state of all voltages on the platform which have
been provided by the platform.

Arguments

No input parameters.

Result

Name (VLTV, Package()

{ //Field Name //Field Type
UsageIdl, // DWORD
UniqueIdl, // DWORD
CurrentValuel // DWORD
Reservedl, // DWORD
UsageIdN, // DWORD
UniquelIdN, // DWORD
CurrentValueN, // DWORD
ReservedN // DWORD

)

NOTE: If no voltages are present on the system, then a null package must be returned for the VSDD object.

Result Parameter Definitions

Field Name Definition

Indicates the type of device the voltage value is reported for. Usageld for
Usageld VSDD package must be one of the values from TABLE 29: VOLTAGE
(VSDD) USAGE ENUMERATION.

The Uniqueld value reported by BIOS in the VSDD package must
Uniqueld uniquely identify a device within the Performance Tuning & Monitoring
ACPI Device scope (this includes TSDD and FSDD devices as well).

The unit of the current voltage returned must be millivolts (mV). E.g., if

CurrentValue the Voltage is 1.1 V, then the value returned must be 1100.
Reserved The value of the reserved field is 0000h.
Intel Confidential 18 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Table 17: VSDD Package Parameter Definitions

3.1.6.3 Fan Sensor Data Dump (FSDD)

The FSDD method evaluates to a packaged list of information about available fan sensors and the current
fan speed values. This object is required when using any Performance Tuning & Monitoring ACPI
Devices.

Syntax for Signature
Method (FSDD, 0, NotSerialized, 0, PkgObject)

Description
The purpose of this method is to be able to get the current speed of all fans on the platform which have
been provided by the platform.

Arguments

No input parameters.

Result

Name (RPMV, Package()

{ //Field Name //Field Type
UsageIdl, // DWORD
UniqueIdl, // DWORD
CurrentValuel, // DWORD
Reservedl, // DWORD
UsageIdN, // DWORD
UniquelIdN, // DWORD
CurrentValueN, // DWORD
ReservedN // DWORD

)

NOTE: If no fan sensors are present on the system, then a null package must be returned.

Result Parameter Definitions

Field Name Definition

Indicates the type of device the fan speed value is reported for. Usageld
Usageld for FSDD package must be one of the values from TABLE 30: FAN
(FSDD) USAGE ENUMERATION.

The Uniqueld value reported by BIOS in the FSDD package must
Uniqueld uniquely identify a device tithing the Performance Tuning & Monitoring
ACPI Device scope (this includes TSDD and VSDD devices as well).

The unit of the current fan speed returned must be rotations per minute

CurrentValue (RPM). E.g., if the speed is 2500 RPM, then the value returned must be
2500.
Reserved The value of the reserved field is 0000h.
Intel Confidential 19 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Table 18: FSDD Package Parameter Definitions

3.1.6.4 Sensor Data Sampling Period (SDSP)

This optional object evaluates to an integer to specify the sampling period to evaluate TSDD, VSDD and
FSDD methods that would guarantee fresh data for temperature, voltage and fan speed values. The unit of
sampling is in 10ths of seconds.

For example, in a platform that has one temperature sensor, one voltage sensor and one fan speed sensor, if
hardware implementation takes 100 ms (0.1 s), 200 ms (0.2 s) and 500 ms (0.5 s) to fetch temperature,
voltage and fan speed values, then the SDSP must return 5.

When this method is present, the OS/application level software should honor the value returned by this
object. The OS/Application level software can evaluate the TSDD, VSDD and FSDD objects at a sampling
rate of the period specified by this object or above.

Syntax for Signature
Method (SDSP, 0, NotSerialized, 0, IntObject)

Description
The purpose of this method is to get the recommended sampling period for the platform temperatures,
voltages, and fans.

Arguments
No input parameters.

Result
Name (RETV, SamplingPeriod)

Result Parameter Definitions

Field Name Definition

Indicates the minimum sampling period that the application can use and
SamplingPeriod expect to receive updated information from the platform for the TSDD,
FSDD, and VSDD methods.

Table 19: SDSP Result Parameter Definitions

3.1.7 Example Implementation

First is the definition of BIOS POST time C-struct definitions and initialization.

//
// GACI structure definition
//
typedef struct ControlIdData
{
UINT32 ControlId;
UINT16 NumberOfValues;

UINTS8 Precision;
UINTS8 Flags;
Intel Confidential 20 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

UINT32 DefaultDataValue;
UINT32 MinDataValue;
UINT32 MaxDataValue;
UINT32 MinDisplayValue;
UINT32 MaxDisplayValue;

} CONTROLID DATA;

#DEFINE SUPPORTED CONTROLID COUNT 6 // Count of 6 is an example

typedef struct CtlBufer

{

CONTROLID DATA CtrlID[SUPPORTED CONTROLID COUNT];

} CONTROLID BUFF;

STATUS CreateGaciBuffer (VOID)

{

CONTROLID BUFF *CtlBuf;

AllocateMemory (EfiACPIMemoryNVS, sizeof(CONTROLID_BUFF), &CtlBuf) ;
CtlBuf->CtrlID[0].ControlId = 0x00;

CtlBuf->CtrlID[0] .NumberOfValues = MaxNonTurboRatio - MaxEffRatio+1;
CtlBuf->CtrlID[0].Precision = 0x00;
CtlBuf->CtrlID[0].Flags = 0x00;

CtlBuf->CtrlID[0] .DefaultDataValue = FlexRatioOverrideDefault;
CtlBuf->CtrlID[0] .MinDataValue = MaxEfficiencyRatio;
CtlBuf->CtrlID[0] .MaxDataValue = MaxNonTurboRatio;
CtlBuf->CtrlID[0] .MinDisplayValue = MaxEfficiencyRatio;
CtlBuf->CtrlID[0] .MaxDisplayValue = MaxNonTurboRatio;
CtlBuf->CtrlID[1].ControlId = BIOS _DEVICE HOST CLK FREQ;
CtlBuf->CtrlID[1] .NumberOfValues = BclkMaxValue - BclkMinValue + 1;
CtlBuf->CtrlID[1].Precision = 0x02;
CtlBuf->CtrlID[1].Flags = 0x00;

CtlBuf->CtrlID[1] .DefaultDataValue = 10000;
CtlBuf->CtrlID[1].MinDataValue = BclkMinValue;
CtlBuf->CtrlID[1] .MaxDataValue = BclkMaxValue;
CtlBuf->CtrlID[1].MinDisplayValue = BclkMinValue;
CtlBuf->CtrlID[1l] .MaxDisplayValue = BclkMaxValue;
CtlBuf->CtrlID[3].ControlId = BIOS DEVICE tCL;
CtlBuf->CtrlID[3].NumberOfValues = tCL MAX - tCL MIN +1;
CtlBuf->CtrlID[3].Precision = 0x00;
CtlBuf->CtrlID[3].Flags = MIN_SETTING_LOW_PERFORMANCE;
CtlBuf->CtrlID[3].DefaultDataValue = tCLDefault;
CtlBuf->CtrlID[3].MinDataValue = tCL MIN;

CtlBuf->CtrlID[3] .MaxDataValue = tCL MAX;

Intel Confidential 21 Intel® Extreme Tuning Utility
BIOS Interface Specification

Rev. 0.63 - February 2, 2011

CtlBuf->CtrlIDI[3]
CtlBuf->CtrlID[3]

CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]
CtlBuf->CtrlID[4]

Ct1lBuf->CtrlID[5]
Ct1lBuf->CtrlID[5]
Ct1lBuf->CtrlID[5]
CtlBuf->CtrlID[5]
CtlBuf->CtrlID[5]
Ct1lBuf->CtrlID[5]
Ct1lBuf->CtrlID[5]
Ct1lBuf->CtrlID[5]
CtlBuf->CtrlID[5]

}

.MinDisplayValue
.MaxDisplayValue

.ControlId
.NumberOfValues
.Precision

.Flags
.DefaultDataValue
.MinDataValue
.MaxDataValue
.MinDisplayValue
.MaxDisplayValue

.ControlId
.NumberOfValues
.Precision

.Flags
.DefaultDataValue
.MinDataValue
.MaxDataValue
.MinDisplayValue
.MaxDisplayValue

tCL_MIN;
tCL_MAX;

BIOS DEVICE tRCD;

tRCD MAX - tRCD MIN + 1;
0x0;

MIN SETTING LOW PERFORMANCE;
tRCDDefault;

tRCD MIN;

tRCD MAX;

tRCD MIN;

tRCD MAX;

BIOS DEVICE tRP;

tRP_MAX - tRP MIN + 1;

0x00;

MIN SETTING LOW PERFORMANCE;
tRPDefault;

tRP_MIN;

tRP_MAX;

tRP_MIN;

tRP MAX;

The example below illustrates a sample implementation of the Performance Tuning & Monitoring ACPI device in

ASL.

//

// Define the XTU Device as a dynamically loadable SSDT or within the

// DSDT under the \ SB scope

//

Scope (_SB)

{
// First declare external variables for items that need to be
// fixed up during POST
// The XTUB structure should point at the CtlBuf which was
// allocated and populated during POST (see previous C-struct
// example) .
External (XTUB)
OperationRegion (XNVS, SystemMemory, XTUB, 0x2000)
Field (XNVS, ByteAcc, NoLock, Preserve)
{

XBUF, 0Ox16cO // GACI Size specific to implementation
}
// Note: When declaring the device, any name unique to the
Intel Confidential 22 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Intel Confidential

// platform implementation can be used (i.e. PTMD as below)

Device (PTMD)

{

Name (_ HID, EISAID("INT3394"))
Name (_CID, EISAID("PNPOCO2"))

Name (IVER, 0x00010000)
Name (GSCV, 0x10000)

Method (GACI, 0x0, NotSerialized, 0, PkgObj)

{

}

Name (RPKG, Package (0x2) {}) // Return package
Store (0x00, Index (RPKG, 0)) // ErrorCode
Store (XBUF, Index (RPKG, 1)) // buffer

Return (RPKG)

Method (GDSV, 0xl, Serialized)

{

//
//
//
//
//
//
//

The next line represents checking for specifically
supported ControlIDs. Typically this would be a
Case or If/Elself statement if multiple ControlIDs
were supported. The default condition should be
an error code where the assumption is that
Discrete values are not supported (or necessary)
for the requested ControlID.

If (LEqual (Arg0, 0x07))

{

}

Return (Package (0x2)

{
zZero, //Error Code
Buffer ()
{
0x07, Zero, Zero, Zero, //Data Value 1
0x07, Zero, Zero, Zero, //Display Value 1

0x09, Zero, Zero, Zero, //Data Value 2
0x09, Zero, Zero, Zero //Display Value 2

0x0e, Zero, Zero, Zero, //Data Value 3
0x0e, Zero, Zero, Zero //Display Value 3
}

})

Return (Package (0x1)

{

1)

0x01 //Error code for continuous settings

23 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

// This method is the Control Device Read
// Arguments by number:
// 0 - Method Name

// 1 - Number of CDRD input parameters

// 2 - Mutex Requirements (See the ACPI Spec)
// 3 - SyncLevel (See the ACPI Spec)

// 4 - Return Type

// 5 - List of Input Types (1 Integer)

Method (CDRD, 1, Serialized, 0, PkgObj, IntObj)

{
Return (Package (0x2)
{
Zero, //Error Code
Zero //Current Value
})
}

// This method is the Control Device Write
// Arguments by number:
// 0 - Method Name

// 1 - Number of CDWR input parameters

// 2 - Mutex Requirements (See the ACPI Spec)

// 3 - SyncLevel (See the ACPI Spec)

// 4 - Return Type

// 5 - List of Input Types (2 Integers)

Method (CDWR, 0x2, Serialized, 0, IntObj, {IntObj, IntObj})

{

Return (Zero) //Error Code

}

Name (TMPV, Package ()
{

//Usageld //Uniqueld //Value //Reserved
0x01, 0x0002, 0, 0,
0x03 0x0003, 0, 0,
0x06 0x0004, 0, 0

1)

Name (VLTV, Package ()

{
//Usageld //Uniqueld //Value //Reserved
0x01, 0x0005, 0, 0
0x04 0x0006, 0, 0
0x06 0x0007, 0, 0
0x10 0x0008, 0, 0

1)

Name (RPMV, Package ()

{
//Usageld //Uniqueld //Value //Reserved
0x01, 0x0009, 0, 0
0x04 0x0004, 0, 0

Intel Confidential 24 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Intel Confidential

})

0x0C 0x000B, 0, 0

Method (TSDD)

{

}

Name (TMPC, 0) // Current Temperature Local Variable

// Implement temperature determination code here

// E.g. If embedded controller firmware implements a
// command to fetch various temperature values,

// implement code to issue the command. Populate the
// TMPV package with the right temperature values

// Update CurrentValuel in TMPV package with
// the current Temperature
Store (TMPC, Index (TMPV, 2))

// Update CurrentValue2 in TMPV package with
// the current Temperature

Store (TMPC, Index (TMPV, 6))

Return (TMPV)

Method (VSDD)

{

}

Name (VLTC, 0) // Current volts Local Variable

// Implement voltage determination code here

// E.g. If embedded controller firmware implements a
// command to fetch various voltage values, implement
// code to issue the command. Populate the LVTV

// package with the right voltage values

// Update CurrentValuel in VLTV package with
// the current Voltage

Store (VLTC, Index (VLTV, 2))

// Update CurrentValue2 in VLTV package with
// the current Voltage

Store (VLTC, Index (VLTV, 6))

Return (VLTV)

Method (FSDD)

{

Name (RPMC, 0) // Current RPM Local Variable

// Implement Fan speed RPM determination code here
// E.g. If embedded controller firmware implements a
// command to fetch various RPM values, implement

25 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

// code to issue the command. Populate the RPMV
// package with the current fan speed

// Update CurrentValuel in RPMV package with
// the current Fan Speed
Store (RPMC, Index (RPMV, 2))

// Update CurrentValue? in RPMV package with
// the current Fan Speed
Store (RPMC, Index (RPMV, 6))
Return (RPMV)
}

Method (SDSP)
{
// Fastest sampling period supported
// Expressed in tenths of a second
Return (10)
}
} // End of PTMD Device

3.2 Watchdog Timer

The only watchdog timer (WDT) implementation that is supported by this revision of XTU is the WDT that is
integrated into the PCH. In order to support the PCH-based Watchdog Timer which is present on Cougar Point-
based platforms and newer, XTU BIOS support for the timer requires integration of the chipset reference code. This
documentation is provided separately from the XTU BIOS Interface Specification and is available from your
technical BIOS support contact at Intel. Aside from the integration of the reference code, no XTU-specific BIOS
support code is necessary.

3.3 SW SMI Real-Time Communications Interface

3.3.1 Overview

The main purpose of the SW SMI Real-Time Communications Interface is to read and write BIOS settings. This
interface uses values that are obtained via data retrieved from the GET AVAILABLE CONTROLS (GACI) method
described earlier in the document. These functions can be accessed in the Operating System via writes of the SW
SMI Command Value to the SW SMI Port with the appropriate register settings which are described below.

3.3.2 BIOS Settings Structure

This structure defines the data that will be described by reads and writes to the BIOS SW SMI command defined by
this specification. The BIOS is required to check the signature field and the length Field prior to writing any data to
the buffer provided by the calling application. If either the signature or the length fields are not correct the BIOS
must respond accordingly:
Intel Confidential 26 Intel® Extreme Tuning Utility

BIOS Interface Specification

Rev. 0.63 - February 2, 2011

If the signature field is correct, the current revision is supported, and the length field is sufficient, then fill
in all the data, update the length field, and return successful.

If the signature is correct but either the length is not sufficient to return all data or the revision is not
supported, then fill in the correct length, major and minor revision fields and return the appropriate error or
warning code.

If the signature is not correct and it is not recognized then do not write any data to the supplied buffer and
return an error.

Data Structure:

Offset Name Length Value
00h Signature DWORD $BD2’
04h Length DWORD Varies
08h Major Revision WORD 2
0Ah Minor Revision WORD 0
0Ch BIOS Setting Count DWORD | Varies
10h BIOS Setting Entry Array Varies Varies

Table 20: BIOS Settings Data Structure

Offset Name Length Value
00h Control ID DWORD Varies
04h Data Value DWORD Varies

Table 21: BIOS Setting Entry

3.3.3 Functions

3.3.3.1 Read BIOS Settings
This function reads the value for all BIOS settings that are present on the interface and places them into a
memory location pointed to by the caller. As stated in the overview, in order to access this function, XTU
will write the SW SMI Command Value to the SW SMI Port. Prior to this the registers must be setup as
described in the command data section. The BIOS Settings Data Structure on a read must contain a list of
all values supported by the platform.
Command Data:
Note: BIOS must be able to address up to 4GB of physical memory from SMM to support this function.
Use the data structure defined in Table 20: BIOS Settings Data Structure.

Register Value Definition
ECX 00h Read BIOS Settings Command
Intel Confidential 27 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

EBX Varies 32-bit Physical Memory Data Location of the location to be
used for the returned BIOS Settings Data Structure (See
Table 20)

Table 22: Read BIOS Settings Command, Register Setup

3.3.3.2 Write BIOS Settings

This function writes all BIOS settings that are present on the interface based on the data contained in a
memory location pointed to by the caller. As stated in the overview, in order to access this function, XTU
will write the SW SMI Command Value to the SW SMI Port. Prior to the SMI invocation the registers
must be setup as described in the command data section. The BIOS Settings Data Structure on a write
command will only contain a list of values changed since the previous write.

Command Data:
Note: BIOS must be able to address up to 4GB of physical memory from SMM to support this function.

Use the data structure defined in Table 20: BIOS Settings Data Structure.

Register Value Definition
ECX 01h Write BIOS Settings Command
EBX Varies 32-bit Physical Memory Data Location of the location to be
used for the BIOS Settings Data Structure (See Table 20) to
be written.

Table 23: Write BIOS Settings Command, Register Setup

3.3.4 Return Values

This table contains a list of possible error codes that can be returned from the BIOS in the EBX register to indicate
the status of the last SMI call.

3.3.4.1 Error Codes

These codes define the return values that indicate a critical failure occurred during the SMI call. For all
critical error conditions the high bit of the DWORD will be set.

NOTE: For all Error Codes considered critical errors the high bit of the DWORD returned must be set.

Value Definition
0x00 Successful
0x8001 Invalid Signature supplied by caller
0x8002 Table length is too small, valid header data returned
0x8003 Table length is too small, no header data returned
Intel Confidential 28 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

0x8004 Unknown Command in ECX
0x8006 Invalid SMI revision
OXFFFF Internal BIOS error - used for BIOS errors that cannot be generically classified. Use ECX to

return a value that will aid in debugging/explaining this return value in more detail. Any data
contained in ECX when this code is returned is a BIOS specific value and is not defined by this
specification.

Table 24: BIOS Settings Command Error Codes

3.3.4.2 Warning Codes

These codes define the return values that indicate some issue occurred with the call but the data was able to
be returned. Each warning may indicate that a subset of the full data set was returned.

Value Definition
0x0002 Table length is too large (non-critical error). A complete data set of the supported table will be
returned.
OxO00FF Internal BIOS warning - used for BIOS warnings that cannot be generically classified. Use ECX

to return a value that will aid in debugging/explaining this return value in more detail. Any data
contained in ECX when this code is returned is a BIOS specific value and is not defined by this
specification.

Intel Confidential

Table 25: BIOS Settings Command Warning Codes

29 Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Appendix A - Enumerations

The following tables represent all of the Control 1Ds supported by the XTU application. The first table has the

Control IDs organized by subsystem for easy ability to find the appropriate devices. A separate table follows which
lists all Control IDs numerically (TABLE 27: NUMERICALLY SORTED CONTROL ID ENUMERATIONS).

Table 26: Usage Sorted Control ID Enumerations

Subsystem Control IDs Definition Type Units

Processor 00h Max Non-Turbo Processor Multiplier (also known as Flex Ratio) Numeric None
1Ah Turbo Mode Enable En/Dis None
1Dh 1-Active Core Ratio Limit Numeric None
1Eh 2-Active Core Ratio Limit Numeric None
1Fh 3-Active Core Ratio Limit Numeric None
20h 4-Active Core Ratio Limit Numeric None
2Ah 5-Active Core Ratio Limit Numeric None
2Bh 6-Active Core Ratio Limit Numeric None
29 Enhanced Intel® Speedstep Technology Enable En/Dis None
2Eh Additional Turbo Mode CPU Voltage Numeric Volts
2Fh Short Window Package Total Design Power Limit Numeric Watts
30h Extended Window Package Total Design Power Limit Numeric | Watts
43h Short Window Time (Sandy Bridge-E only) Numeric | Seconds
42h Extended Window Time Numeric | Seconds
31h Short Window Package Total Design Power Enable En/Dis None
32h Package Total Design Power Lock Enable En/Dis None
33h IA Core Total Design Power Limit Numeric Watts
34h IA Core Total Design Power Enable En/Dis None
35h IA Core Total Design Power Lock Enable En/Dis None
36h Internal Graphics Core Total Design Power Limit Numeric Watts
37h Internal Graphics Core Total Design Power Enable En/Dis None
38h Internal Graphics Core Total Design Power Lock Enable En/Dis None
39h IA Core Current Maximum Numeric | Amps
3Ah Internal Graphics Core Current Maximum Numeric | Amps
3Bh Graphics Turbo Ratio Limit Numeric None

Intel Confidential

30

Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

3Ch Graphics Core Voltage Numeric Volts
3Fh Runtime Turbo Override (Sandy Bridge Only) Numeric None
41h Internal PLL Overvoltage Enable En/Dis None
Clocking 01h Reference Clock Frequency Numeric MHz
45h Reference Clock Ratio (Sandy Bridge-E Only) Numeric None
Voltage 02h CPU Voltage Override Numeric Volts
22h Dynamic CPU Voltage Offset Numeric mVv
05h Memory Voltage Numeric Volts
44h Secondary Memory VR Voltage (Sandy Bridge-E Only) Numeric Volts
25h System Agent Voltage Numeric Volts
26h PCH Voltage Numeric Volts
2Eh Additional Turbo Mode CPU Voltage Numeric mV
3Dh CPU PLL Voltage Numeric Volts
3Eh CPU 10 Voltage Numeric Volts
Memory 13h DDR Multiplier Numeric None
07h CAS Latency (tCL) Numeric | Clocks
08h Row Address to Column Address Delay (tRCD) Numeric | Clocks
09h Row Precharge Time (tRP) Numeric | Clocks
0Ah Row Active Time (tRAS) Numeric | Clocks
0Bh Write Recovery Time (tWR) Numeric | Clocks
15h Minimum Refresh Recovery Time (tRFC) Numeric | Clocks
16h Row Active to Row Active delay (tRRD) Numeric | Clocks
17h Internal Write to Read Command Delay (tWTR) Numeric | Clocks
18h System Command Rate Mode Numeric None
19h Read to Precharge delay (tRTP) Numeric | Clocks
27h Row Cycle Time (tRC) Numeric | Clocks
28h Four Active Window Delay (tFAW) Numeric | Clocks
2Ch Average Periodic Refresh Interval (tREFI) Numeric | Clocks
2Dh Minimum CAS Write Latency Time (tCWL) Numeric | Clocks
40h XMP Profile Selection Profile Profile
Intel Confidential 31 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Table 27: Numerically Sorted Control ID Enumerations

Control IDs Definition
00h Max Non-Turbo Processor Multiplier (also known as Flex Ratio)
01h Reference Clock Frequency
02h CPU Voltage Override
05h Memory Voltage
07h CAS Latency (tCL)
08h Row Address to Column Address Delay (tRCD)
09h Row Precharge Time (tRP)
0Ah Row Active Time (tRAS)
0Bh Write Recovery Time (tWR)
0Dh PCI Express Frequency
OEh PCI Frequency
13h DDR Multiplier
15h Minimum Refresh Recovery Time (tRFC)
16h Row Active to Row Active delay (tRRD)
17h Internal Write to Read Command Delay (tWTR)
18h System Command Rate Mode
19h Read to Precharge delay (tRTP)
1Ah Turbo Boost Technology Enable
1Dh 1-Active Core Ratio Limit
1Eh 2-Active Core Ratio Limit
1Fh 3-Active Core Ratio Limit
20h 4-Active Core Ratio Limit
22h CPU Voltage Offset
25h System Agent Voltage
26h PCH Voltage
27h Row Cycle Time (tRC)
28h Four Active Window Delay (tFAW)
29h Enhanced Intel® Speedstep Technology Enable/Disable
2Ah 5-Active Core Ratio Limit
2Bh 6-Active Core Ratio Limit
Intel Confidential 32 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Control IDs Definition
2Ch Average Periodic Refresh Interval (tREFI)
2Dh Minimum CAS Write Latency Time (tCWL)
2Eh Max Turbo Mode CPU Voltage
2Fh Short Window Package Total Design Power Limit
30h Extended Window Package Total Design Power Limit
31h Short Window Package Total Design Power Enable
32h Package Total Design Power Lock Enable
33h IA Core Total Design Power Limit
34h IA Core Total Design Power Enable
35h IA Core Total Design Power Lock Enable
36h Internal Graphics Core Total Design Power Limit
37h Internal Graphics Core Total Design Power Enable
38h Internal Graphics Core Total Design Power Lock Enable
39h IA Core Current Maximum
3Ah Internal Graphics Core Current Maximum
3Bh Graphics Turbo Ratio Limit
3Ch Graphics Core Voltage
3Dh CPU PLL Voltage
3Eh CPU 10 Voltage
3Fh Runtime Turbo Override
40h XMP Profile Selection
41h Internal PLL Overvoltage Enable
42h Extended Time Window
43h Short Time Window (Sandy Bridge-E only)
44h Secondary Memory VR Voltage (Sandy Bridge-E only)
45h Reference Clock Ratio (Sandy Bridge-E only)

Table 28: Temperature (TSDD) Usage enumeration

Enumeration Definition
00h Unknown
0lh CPU Core
Intel Confidential 33 Intel® Extreme Tuning Utility

BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Enumeration Definition
02h CPU Die
05h Voltage Regulator (VR)
06h DIMM
07h Motherboard Ambient
08h System Ambient
09h CPU Inlet
0Ah System Inlet
0Bh System Outlet
0Ch Power Supply
0Dh Power Supply Inlet
OEh Power Supply Outlet
OFh Hard Drive
10h Graphics Processor Unit (GPU)
11h Laptop Skin
12h Optical Disk Drive
13h PCMCIA slot
14h PCH
15h Battery

Table 29: Voltage (VSDD) Usage enumeration

Enumeration Definition
00h Unknown
01h +12 Volt
02h -12 Volt
03h +5 Volt
04h +5 Volt Backup
05h -5 Volt
06h 3.3 Volt
07h 2.5 Volt
08h 1.5 Volt
09h CPU Voltage

Intel Confidential

34

Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

Enumeration Definition
0Dh Power Supply Inlet
OFh +3.3 Volt Standby
10h CPU System Agent Voltage
11h 1.8 Volt
12h PCH Voltage
13h DDR Voltage
14h Battery
15h CPU IO Voltage
16h CPU PLL Voltage

Table 30: Fan (FSDD) Usage enumeration

Enumeration Definition
00h Unknown/Other Usage
01h CPU
02h CPU System
04h Voltage Regulator
05h Chassis
06h Chassis Inlet
07h Chassis Outlet
08h Power Supply
09h Power Supply Inlet
0Ah Power Supply Outlet
0Bh Hard Disk
0Ch Graphics
ODh Auxiliary
OEh PCH
OFh Battery
FFh Unused

Intel Confidential

35

Intel® Extreme Tuning Utility
BIOS Interface Specification
Rev. 0.63 - February 2, 2011

